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Abstract. In many applications of the intranuclear-cascade (INC) model to spallation reactions, all nucle-
ons in the target are assumed to move in a common potential well. However, the potential depth should
depend upon nucleon isospin and energy. The present paper describes the first results obtained after the
introduction of these features in the Liège INCL3 model. It is shown that such modifications change cas-
cade particle multiplicities significantly but total particle multiplicities are only slightly altered. Nucleon
inclusive cross-sections are not modified significantly, except in the region of the quasi-elastic peaks. In
particular, the centroid of the peak in neutron double differential cross-sections relative to proton-induced
reactions can be sizeably shifted toward larger energy losses, as is observed experimentally. Implications
of these results are discussed.

PACS. 25.40.-h Nucleon-induced reactions – 24.10.-i Nuclear reaction models and methods – 24.10.Lx
Monte Carlo simulations (including hadron and parton cascades and string breaking models)

1 Introduction

There is a renewed interest in spallation reactions in the
GeV range, mainly induced by several projects around
the world concerning transmutation of nuclear wastes in
accelerator-driven sytems (ADS) or other devices. The
most successful tool for the description of these reac-
tions is the intranuclear cascade (INC) plus evaporation
model, which pictures the reaction mechanism as a first
stage of well-separated successive nucleon-nucleon colli-
sions followed by an evaporation stage. Recently, the Liège
INC model [1] supplemented by the K.-H. Schmidt evap-
oration model [2,3] has been shown to be very success-
ful in the confrontation with a large set of experimen-
tal data for nucleon-induced spallation reactions in the
100 MeV–2 GeV range. However, this study presents some
puzzling results. First, the description of the so-called
quasi-elastic peak, which is largely dominated by single
scattering, is generally less satisfactory than the one of
the rest of the cross-section, which arises from multiple
scattering. Second, the position of the quasi-elastic peak
is well reproduced in the p + A→ p + X inclusive cross-
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section and not in the p + A → n + X one1. This might
be attributed to using the same average potential well for
protons and neutrons. Furthermore, this potential is sup-
posed to be independent of the energy of the particles; this
contradicts the common knowledge, accumulated from
optical-model studies, which indicates that the real part of
the optical-model potential shows an important momen-
tum dependence. This potential, whose depth is around
50 MeV for low-energy incident particles, practically van-
ishes when their incident energy exceeds ∼ 200 MeV. This
might have some non-negligible effect on the neutron mul-
tiplicity, an important feature for transmtutation studies.

We want here to investigate the effects of the isospin
and energy dependences of the nuclear-potential well,
which are usually neglected in INC models. Actually, some
version of the ISABEL model [4] has introduced these as-
pects, to some extent, but as far as we know, there is no
systematic investigation of their effects. We present here
such a study, using the Liège INC model. We will use the
version named INCL3 [5], which basically differs from the
one used in ref. [1] by the neglect of the diffuseness, be-
cause the present work has started before the last one has
been finalized. Since we are mainly interested in showing

1 Hereafter, we simply refer to these processes as (p, p) and
(p, n) scatterings and the expression “quasi-elastic peak” ap-
plies to both processes.
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the variation for the results due the introduction of the
isospin and energy dependences, the differences between
the two models are not expected to play a significant role.

The paper is organized as follows. In sect. 2 we shortly
present the INC model and the ingredients concerning the
nuclear potential. We present results for particle multi-
plicities and nucleon double differential cross-sections in
sect. 3 and discuss their implications. Section 4 contains
our conclusion.

2 The INC model and the average nuclear

field

2.1 Reminder of the Liège INC model

The version of the Liège INC model that we use here is de-
scribed in detail in ref. [5]. It is sufficient here to recall that
the nucleon-nucleus interaction process is described by a
sequence of binary collisions occuring as in free space, ex-
cept for Pauli blocking (here a strict Pauli blocking is ap-
plied instead of a statistical implementation as in ref. [5],
but this is of no importance for the energies investigated
here). At the beginning, target nucleons are distributed at
random in the nuclear volume and their momenta are dis-
tributed at random in a Fermi sphere of radius kF. They
are moving in an attractive potential of depth V0. Nucle-
ons can be excited, owing to collisions, to ∆-resonances,
which can decay into a pion and a nucleon. Of course
inverse processes are also included. ∆-resonances are sup-
posed to experience the same potential as nucleons. Pi-
ons are assumed not to feel any potential, for simplicity.
This choice was basically motivated by the large uncer-
tainties on the real part of the pion-nucleus optical-model
potential [6]. The cascade process is terminated accord-
ing to a physics criterion, which mainly reflects the end
of the rapid variation of the target excitation energy, cor-
responding to the emission of fast particles. The further
de-excitation of the target is handled by an evaporation-
fission code (here the Dresner code [7] is used). In the fol-
lowing we describe how we have implemented the isospin
and energy dependences of the nuclear mean field. In or-
der to enable us to disentangle the respective effects of the
two features, we implemented them successively.

2.2 Isospin dependence

We consider that neutrons and protons are moving in po-
tentials differing by their respective depths, V i

0 for i = n, p.
The quantities V i

0 are determined as follows. Let kn
F and k

p
F

be the neutron and proton Fermi momenta (defining the
sizes of the neutron and proton Fermi seas, respectively),
and T i

F the corresponding Fermi kinetic energies2

T i
F =

~
2ki

F

2

2M
, (1)

2 Relativistic kinematics is used, but, for simplicity, we write
down non-relativistic formulae.

Table 1. Fermi momenta and nuclear-potential depths for
208Pb and 56Fe nuclei.

ki

F V i

0

(MeV/c) (MeV)

No isospin dependence 270.34 45.0
Isospin dependence
208

82 Pb protons 249.75 40.69
neutrons 288.20 50.27

56

26Fe protons 263.74 47.56
neutrons 276.63 51.13

where M is the nucleon mass (we do not distinguish be-
tween neutron and proton). In accordance with the Fermi
gas model [8,9], the following relations are assumed:

(

kn
F

k
p
F

)3

=
N

Z
, (2)

1

3π2

[

(kn
F)

3 + (kp
F)

3
]

= ρ0. (3)

These relations, whereN and Z are the target neutron and
proton numbers, respectively, and ρ0 is the normal nuclear
matter density, determine the Fermi momenta uniquely.
We now require that, in the spirit of Koopman’s theo-
rem [10], the total Fermi energy equals the separation en-
ergy, both for protons and neutrons:

T i
F − V i

0 = −Si. (4)

The quantities Si’s can be taken from experiment (here
values of ref. [11] are used) and the depth of the potentials
can be determined from the last equation. Typical values
are given in table 1.

We can, of course, always write V i
0 as

V i
0 = V1 + V2τi, (5)

where τi is twice the third component of the isopsin of
the nucleons. For ∆-particles we adopt the same form. In
other words, the potential seen by the ∆+ (∆0) particles is
the same as the one felt by the protons (neutrons). There
is no clear experimental information about the potential
seen by the ∆-particles, but this choice seems reasonable.
We have to mention that theoretical evaluations [12] point
to a somehow smaller value of V1 for the ∆’s than for the
nucleons. We keep however the same value, for simplicity.

It is interesting to establish a connection with the phe-
nomenology of the optical-model potential. Let us call kF

the quantity defined by

2

3π2
(kF)

3 = ρ0, (6)

i.e. the average Fermi momentum and let us suppose
that Sp=Sn (=S), for simplicity. In ref. [5], where the
same Fermi momentum was taken for neutrons and pro-
tons and the equality of separation energy was assumed,
kF = 270 MeV/c and V i

0 = V0 = 45 MeV. Using eqs. (2),
(3) and (6), one writes

ki
F = kF(1− ξτi)

1/3, (7)
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where ξ is given by

ξ =
N − Z

A
= −

2Tz

A
. (8)

The quantity Tz is the z-component of the target isospin.
With the help of eq. (4), one gets:

V i
0 =

~
2k2

F

2M
(1− ξτi)

2/3 + S. (9)

Expanding expression (9) to first order in ξ (it is easy to
see that non-linear terms in ξ are small, even for heavy
nuclei), we obtain expression (5) with

V1 ≈
~

2k2
F

2M
+ S, (10)

and

V2 ≈ −
2

3

~
2k2

F

2M
ξ. (11)

In optical-model phenomenology, it is customary to write
down the proton and neutron average potentials as [13]

V
p
0 = U0 + U1ξ + 0.4

Z

A1/3
− Vc, (12)

where the third term is the so-called Coulomb anomaly
and where Vc is the average Coulomb potential (in the
nuclear volume), and

V n
0 = U0 − U1ξ. (13)

Rewriting these expressions as in eq. (5) (using quanti-
ties with upper index ph to recall that they are defined
phenomenologically), one has

V
ph
1 = U0 +

1

2

(

0.4
Z

A1/3
− Vc

)

, (14)

and

V
ph
2 = U1ξ +

1

2

(

0.4
Z

A1/3
− Vc

)

. (15)

Although the dependence upon ξ is not the same, the
quantities appearing in eqs. (14), (15) are numerically
close to those appearing in eqs. (10), (11). For instance,
for a 208Pb target, V1 ≈ 45 MeV and V2 ≈ −5 MeV, to be

compared with V
ph
1 ≈ 40 MeV and V

ph
2 ≈ −2 MeV. For

56Fe, V1 ≈ 47 MeV and V2 ≈ −1.8 MeV, to be compared

with V
ph
1 ≈ 42 MeV and V

ph
2 ≈ −1.0 MeV. Although

the comparison is not perfect, it indicates that our simple
parametrization of the V i

0 ’s is quite reasonable.

2.3 Energy dependence

It is well known that the nuclear mean field is momen-
tum dependent. This property can also be formulated as
an energy dependence [14]. Phenomenology tells that the
depth of the nuclear potential decreases roughly linearly
when the total energy increases until the latter reaches

∼ 200 MeV. The potential vanishes at this energy and
is very small for larger energies. We will adopt here the
following nucleon potential

V i
0 (E) = V i

0 − αi(E − Ei
F), for E < E0

= 0, for E > E0, (16)

where E is given by

E =
~

2k2

2M
+ V i

0 (E), (17)

and where Ei
F is defined by the same expression with k =

ki
F. The quantity E0 is the energy where the expression

of the first line of eq. (16) vanishes. It is evident from
the last two expressions that the Fermi (kinetic and total)
energies remain the same as before introducing the energy
dependence and that the new potentials are the same as
the previous ones at the Fermi levels. Of course, eqs. (16),
(17) allow to rewrite the potentials as functions of the
momentum or of the kinetic energy of the particle. Below
we use αp = αn = 0.23, following ref. [15].

We will also consider potentials with a smoother en-
ergy dependence

V i
0 (E) = V i

0 exp(−βi(E − Ei
F)), (18)

with βi= 0.00681, as in refs. [13,16]
The energy dependence has been neglected for ∆-

particles, for simplicity. This seems reasonable, in view
of the scarce theoretical information on the subject.

2.4 Implementation in the INC code

Let us consider first binary reactions N1N2 ­ N3N4,
where Ni stands generically for nucleons and ∆’s. One
has to fulfill energy conservation laws:

p1 + p2 = p3 + p4, (19)

E1 + V 1
0 + E2 + V 2

0 = E3 + V 3
0 + E4 + V 4

0 , (20)

where the Ei’s are the mass plus kinetic energies3. For
a unique potential (no isospin dependence, no energy de-
pendence, same potential for nucleons and ∆’s) as in the
standard version of the Liège model, the potentials can-
cel from both sides of eq. (20). Note that they also cancel
in the case of isospin-dependent potentials (eq. (5)) for
nucleon-nucleon collisions.

For energy-dependent potentials, we proceed as fol-
lows. We transform the 4-momenta (Ei,pi) in the center
of mass frame of the colliding pair. We determine the final
c.m. momentum p∗ and the angles neglecting the poten-
tials. The effects of the latter is simulated by multiplying
p∗ by a factor f . After transforming back in the origi-
nal frame, eq. (19) is automatically verified and eq. (20)

3 We consider here the nuclear potential as a vector poten-
tial, for simplicity. Since most of the particles involved have
small kinetic energy, results are expected to be the same for
another choice of the Lorentz character of the potential.
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Table 2. Multiplicities per primary reaction obtained in proton-induced reactions on 208Pb and 56Fe nuclei at 800 MeV.
Excitation energies (E∗) are also given (in MeV). Experimental data are from ref. [18].

p (800 MeV) + 208Pb

Exp. Standard Isospin Isospin Isospin
and energy and energy

linear exponential

casc n E > 20 MeV 2.050 1.918 1.824 1.784
20 MeV > E > 2 MeV 0.613 0.576 0.444 0.411
2 MeV > E 0.039 0.036 0.026 0.023
total 2.702 2.530 2.294 2.218

p E > 20 MeV 1.874 1.959 1.925 1.939
E < 20 MeV 0.177 0.187 0.150 0.151
total 2.051 2.146 2.075 2.090

π 0.419 0.421 0.390 0.394
E∗ 214.370 217.580 227.455 241.504

casc n E > 20 MeV 1.9 2.103 1.974 1.887 1.857
+evap 20 MeV > E > 2 MeV 6.5 9.166 9.316 9.582 10.07

2 MeV > E 5.163 5.209 5.286 5.392
total 16.432 16.499 16.755 17.319

p E > 20 MeV 1.903 1.988 1.957 1.975
E < 20 MeV 1.411 1.410 1.439 1.540
total 3.314 3.398 3.396 3.515

π 0.419 0.421 0.390 0.394
α 0.911 0.910 0.963 1.048
d 0.597 0.605 0.650 0.722
t 0.402 0.412 0.446 0.496

p (800 MeV) + 56Fe

Exp. Standard Isospin Isospin Isospin
and energy and energy

linear exponential

casc n E > 20 MeV 1.575 1.480 1.447 1.437
20 MeV > E > 2 MeV 0.326 0.303 0.243 0.231
2 MeV > E 0.019 0.018 0.014 0.013
total 1.920 1.801 1.704 1.681

p E > 20 MeV 1.938 1.914 1.902 1.906
E < 20 MeV 0.284 0.279 0.225 0.221
total 2.222 2.193 2.127 2.127

π 0.487 0.487 0.443 0.446
E∗ 118.497 121.833 131.789 144.978

casc n E > 20 MeV 1.4 1.659 1.570 1.550 1.563
+evap 20 MeV > E > 2 MeV 1.7 2.607 2.663 2.790 3.021

2 MeV > E 1.127 1.141 1.169 1.201
total 5.393 5.274 5.509 5.785

p E > 20 MeV 2.038 2.017 2.019 2.046
E > 20 MeV 2.659 2.670 2.761 2.938
total 4.697 4.687 4.789 4.984

π 0.487 0.487 0.443 0.446
α 0.403 0.412 0.447 0.488
d 0.410 0.428 0.479 0.552
t 0.084 0.089 0.101 0.117

appears as an algebraic equation for f , that we solve iter-
atively. Generally f is close to unity and a small number
of iterations is sufficient. We proceed in the same manner
for ∆-decay. For the π+N → ∆ reactions, the procedure
is simpler and does not require any iteration. Indeed, the
energy momentum conservation equation writes, with the
indices 1 for pion (no potential), 2 for nucleon and 3 for
Delta,

p1 + p2 = p3, (21)

E1 + E2 + V 2
0 = E3 + V 3

0 , (22)

in the target frame and

p
′

1 + p
′

2 = 0, (23)

E′

1 + E′

2 + V 2
0

′

= E′

3 + V 3
0

′

, (24)

in the pion-nucleon center-of-mass frame (with respect to
the 4-vectors (E1,p1) and (E2,p2)). The primes indicate
that the quantities have been transformed in this frame.
Equation (24) determines E′

3 (since all other quantities are
known), which is nothing but the mass of the ∆-particle.
A Lorentz transformation back to the target frame allows
the determination of the 4-vector (E3,p3).

3 Results

We compare results obtained with the standard model and
the modified model for the case of proton-induced reac-
tions on 208Pb and 56Fe nuclei, both at 256 MeV and at
800 MeV.
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Table 3. Multiplicities per primary reaction obtained in proton-induced reactions on 208Pb and 56Fe nuclei at 256 MeV.
Excitation energies (E∗) are also given (in MeV).

p (256 MeV) + 208Pb

Standard Isospin Isospin Isospin
and energy and energy

linear exponential

casc n E > 20 MeV 0.966 0.876 0.838 0.806
20 MeV > E > 2 MeV 0.507 0.456 0.360 0.329
2 MeV > E 0.035 0.033 0.024 0.021
total 1.508 1.355 1.222 1.256

p E > 20 MeV 1.028 1.108 1.121 1.136
E < 20 MeV 0.143 0.158 0.135 0.135
total 1.171 1.266 1.256 1.261

π 0.029 0.026 0.012 0.013
E∗ 88.086 90.226 94.231 99.455

casc n E > 20 MeV 0.968 0.879 0.841 0.809
+evap 20 MeV > E > 2 MeV 4.198 4.272 4.388 4.611

2 MeV > E 3.750 3.806 3.890 4.006
total 8.916 8.957 8.919 9.426

p E > 20 MeV 1.030 1.110 1.123 1.138
E < 20 MeV 0.432 0.448 0.447 0.476
total 1.462 1.558 1.570 1.614

π 0.029 0.026 0.012 0.013
α 0.123 0.126 0.138 0.155
d 0.059 0.061 0.069 0.079
t 0.033 0.036 0.040 0.047

p (256 MeV) + 56Fe

Standard Isospin Isospin Isospin
and energy and energy

linear exponential

casc n E > 20 MeV 0.830 0.763 0.750 0.735
20 MeV > E > 2 MeV 0.302 0.274 0.225 0.213
2 MeV > E 0.020 0.018 0.014 0.013
total 1.152 1.055 0.989 0.961

p E > 20 MeV 1.232 1.220 1.213 1.223
E < 20 MeV 0.288 0.284 0.242 0.236
total 1.520 1.504 1.455 1.459

π 0.033 0.033 0.013 0.015
E∗ 56.982 59.267 64.556 70.319

casc n E > 20 MeV 0.836 0.770 0.759 0.747
+evap 20 MeV > E > 2 MeV 1.303 1.334 1.396 1.512

2 MeV > E 0.871 0.895 0.924 0.961
total 3.010 2.999 3.079 3.220

p E > 20 MeV 1.244 1.233 1.229 1.242
E < 2 MeV 1.743 1.761 1.831 1.936
total 3.087 3.094 3.062 3.178

π 0.033 0.033 0.013 0.015
α 0.186 0.196 0.223 0.250
d 0.096 0.104 0.124 0.145
t 0.014 0.016 0.020 0.024

3.1 Particle multiplicities

A thorough comparison is provided by tables 2 and 3. For
each case, the results refer to a sample of two millions of
events, allowing most of the times to detect variations of
multiplicities of 0.01 beyond statistical uncertainty.

We first discuss the effect of the introduction of the
isospin dependence. The most important result is the re-
duction of the cascade neutron multiplicity, especially for
the Pb case. The reduction is proportionally more im-
portant at low incident energy. Correlatively, the proton
cascade multiplicity is increased, in the Pb case, also more
importantly at lower energy. In our opinion, this is a sim-
ple consequence of the modification of the Fermi momenta.
Compared to the standard case, the proton Fermi mo-
mentum has been diminished, while the neutron Fermi
momentum has increased. Since the Fermi energy (both

for protons and neutrons) has basically remained the same
as in the standard case, the average (single-particle) en-
ergy of the target protons is higher than the one of the
target neutrons. It is therefore easier (more difficult) to
remove a proton (a neutron) in the modified case than in
the standard case. This argument also explains why the
effect is smaller for Fe, which is almost charge symmet-
ric. In this case, the proton cascade multiplicity is even
slightly decreased, which arises from the fact that, due
to the relatively small difference of the Fermi momenta,
the difference in the separation energies (see table 1) also
plays a role. Let us mention in passing that in the Fe case,
the cascade proton multiplicity exceeds the neutron one.
This is due to the dominant role of the incident proton,
as explained in ref. [17].

It can be seen that the excitation energy is slightly
more important with the modified potential. As a
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consequence, the number of evaporated particles is slightly
increased. Globally, the total neutron multiplicity is only
very slightly increased for Pb and basically remains un-
touched for Fe. The total proton multiplicity roughly fol-
lows the same pattern. The multiplicities of other evap-
orated particles are moderately changed and follow the
modifications of the excitation energy.

When the (linear) energy dependence is added, the
tendency for the cascade neutron multiplicity is enhanced:
it is further decreased and the total reduction in compar-
ison with the standard case reaches 10–15% at 800 MeV
and 20% at 256 MeV. As for the protons, their multiplic-
ity is slightly decreased by the introduction of the energy
dependence. In our opinion, the physical origin of these
effects is the following: since the potential energy is in-
creasing linearly (in absolute value) below the Fermi level
(see eq. (16)), the average single-particle energy of the
bound nucleons is lowered, compared to the case with the
isospin-dependent and energy-independent potential. The
lowering is more important for the neutrons than for the
protons, as the Fermi kinetic energy is larger for the first
kind of particles. The comparison between the standard
case and the isospin- and energy-dependent potential case
reveals that the proton cascade multiplicity is larger in
the second case, for the Pb target, while it is smaller for
Fe target.

With the introduction of the linear energy dependence,
the excitation energy is further increased. The total in-
crease reaches 6% for Pb at 800 MeV. The trends are ac-
centuated: this time, the total neutron multiplicity is defi-
nitely, though slightly (with respect to the standard case),
increased for Pb at both energies. Note, however, that the
neutron multiplicity for E > 20 MeV is substantially de-
creased. The modification of the total proton multiplicity
shows no definite pattern. The total increase of the proton
multiplicity, compared to the standard case, is of the order
of 2% at 800 MeV and of 8% at 256 MeV for Pb, but prac-
tically vanishes for Fe at the same energy. In the E > 20
MeV range, the proton multiplicity is sizeably increased.

Finally let us notice that the results are basically the
same when an exponential energy dependence is adopted
for the nuclear mean field (last columns of tables 2 and
3), but the trends are more pronounced.

3.2 Particle spectra

A comparison is made in figs. 1 and 2. Concerning neu-
tron spectra (fig. 1), the most important result is the shift
of the quasi-elastic peak toward lower energy when the
isospin dependence is introduced, a shift which is ampli-
fied when the energy dependence is further introduced.
The difference between the two choices of energy depen-
dences (eqs. (16), (18)) is not very significant except at 0
degrees. The total shift amounts to ∼ 15 MeV at 0 de-
grees and reaches ∼ 35 MeV at 10 degrees, which goes in
the good direction if one compares with the experimental
cross-section. There is also a slight increase of the inten-
sity of the quasi-elastic peak, which also helps to cure the
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Fig. 1. Neutron double differential cross-section for proton-
induced reactions on 208Pb at 800 MeV. Comparison of the-
oretical results with different choices of the nuclear average
potential: standard choice, isospin- and energy-independent
potential (full line with crosses), isospin-dependent, energy-
independent potential (dashed line with circles), isospin-
and linearly energy-dependent potential (eq. (16)) (dash-
dotted line with triangles), isospin- and exponentially energy-
dependent potential (eq. (18)) (dotted line with squares).
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Fig. 2. Proton double differential cross-section for proton-
induced reactions on 208Pb at 800 MeV. Comparison of the-
oretical results with different choices of the nuclear average
potential. Same conventions as in fig. 1.

deficiency of ref. [1]. The rest of the spectra is not really
affected by modifications of the nuclear potential.

For proton spectra (fig. 2), the shift is much less im-
portant than for the neutron spectra. First the isospin de-
pendence does not bring any significant modification. The
energy dependence introduces a shift of the quasi-elastic
peak, the order of which is practically vanishing at 0 de-
grees and reaches ∼ 15 MeV at 10 degrees (surprisingly a
little bit larger for exponentially varying potentials).

The difference of behaviour in neutron and proton
spectra can be traced back to the properties of the
Fermi seas. In (p, p) reactions (for single scattering) a
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high-energy proton is produced at high energy and small
angles (small energy-momentum transfer) after an elastic
scattering with a target nucleon. Due to the Pauli prin-
ciple, this nucleon should be close to the Fermi surface
in such a way that (minus) the small momentum trans-
fer brings it out of its Fermi sphere. Although the Fermi
momentum has been slightly changed, the available mo-
mentum space is not very much affected. Furthermore,
the potential energy of the nucleons having been modified
by the same amount in the initial and in the final states,
this modification has practically no effect, as explained
in sect. 2.4. On the other hand, in (p, n) reactions, the
emission of a neutron at small energy-momentum transfer
implies a collision with a target neutron which, by charge
exchange, is transformed into a proton. Due to the Pauli
principle, (minus) the small energy-momentum transfer
should bring the proton out of the corresponding Fermi
sphere. With the standard choice, proton and neutron
Fermi momenta are the same and the situation is the same
for charge exchange as for quasi-elastic scatterings. With
isospin modified potentials, the neutron Fermi momentum
is larger than the proton Fermi momentum. At first sight,
the Pauli blocking is not very operating in such a case,
since the neutron Fermi sphere is noticeably larger than
the proton Fermi sphere (at least in heavy nuclei). How-
ever, one should not forget that the potentials are such
that the Fermi energies are the same for protons and neu-
trons. Therefore, energy conservation makes only a small
part of the Fermi spheres be involved. The net result is
however that the relevant parts of the momentum spaces
are expected to differ significantly from what they are in
the standard case.

Experimentally [18], the position of the quasi-elastic
peak is lying at 720± 10 MeV in p(800 MeV) + 208Pb→
n+X reactions at 10 degrees. In p(800 MeV) + 208Pb→
p+X at 11 degrees, it is situated at 770±20 MeV [19]. It
is thus rewarding to notice that the positions of the peaks
are well represented by the simple isospin- and energy-
dependent potentials introduced above. We have to notice
however that the amplitude of the quasi-elastic peak is un-
derestimated by the present calculation (using the INCL3
code), whereas it comes out right from calculations with
the INCL4 version of the Liège model.

4 Conclusion

We have presented a version of the Liège INC model,
which accounts for the isospin and energy dependence of
the nuclear mean field. The global effects brought by these
modifications are not drastic. Nevertheless, some effects

are significant and show systematic features. We recall the
most important ones. More protons and less neutrons are
emitted in the cascade stage. The excitation energy at the
end of this stage is increased. As a result, the total pro-
ton multiplicity is increased, but the neutron one remains
basically the same. The location of the quasi-elastic peak
is shifted toward lower energy losses in (p, n) reactions.
There is also a shift in the same direction in (p, p) reac-
tions, but it is much smaller. These results are expected
to cure remaining deficiencies of the INC model of ref. [1].

We are very grateful to P. Henrotte and B. Van den Bossche
for useful discussions.
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